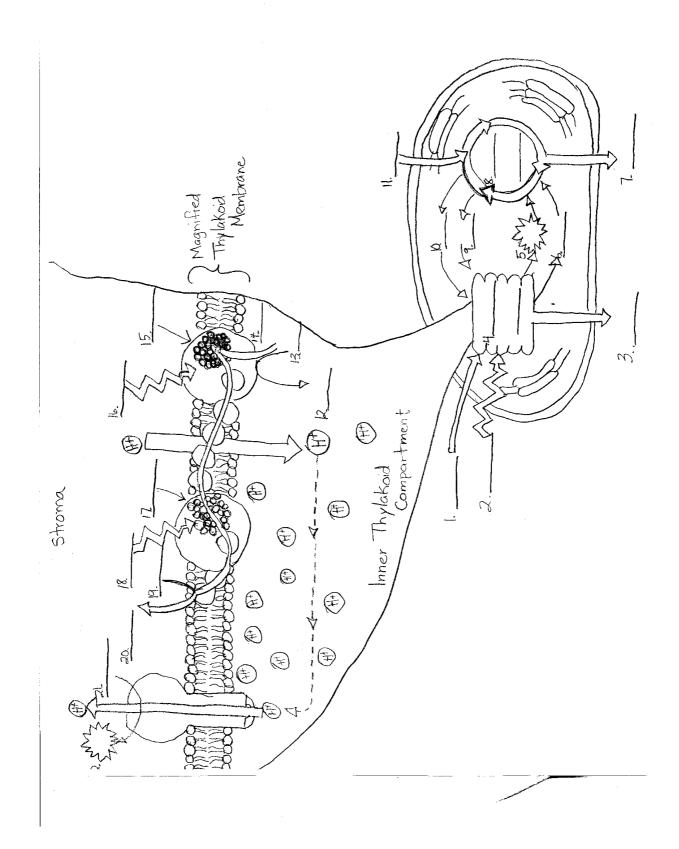
Photosynthesis Review

The leaves of pla	nts are the organs responsib	le for photosynthesis. Within leaves	s, the
	tissue contains cells in	n which there are many	·
These are organelles resp	onsible for photosynthesis.	Within these organelles pigment mo	olecules are
embedded in the membra	ines of	, which are arranged ir	n stacks called
Two	green pigments called	and	
as well as a group of redd	ish-orange pigments called ₋	, absor	rb
	of sunlight and conve	rt their kinetic energy into the chem	ical energy of
	and	This stage of photosynthesis	is referred to as
the	The chemical end	ergy from this stage is used to produ	ce a sugar called
dui	ring the	which occurs in the	
of the chloroplast.			
In photosystem I	of the light reactions, group	s of pigment molecules, known as	
absorb photons of light, w	hich excites their electrons.	One molecule of chlorophyll <i>a</i> , calle	ed the
	has its energized electro	ons boosted up to a	This
compound then passes th	e electrons to an electron tra	ansport chain.	is the eventual
recipient of these high en	ergy electrons and it is redu	ced to form	
The electrons los	t from photosystem I are rep	placed by electrons from	·
This occurs when photon	s strike its antenna molecule	es, which boosts electrons from it	
to a primary electron acco	eptor. This compound then j	passes electrons down an	
to photosystem I. The ult	imate source of electrons for	r this process come from	<i></i>
which is split using the er	nergy of photons in this same	e photosystem.	
As electrons mov	e from	to	
along an electron transpo	ort chain they lose energy. The	his energy is used to pump	
from the	into the	This creates a conce	entration gradient
		by the process of facilitated	
		rylates to form ATP. F	
	^		
		 are energy rich products of the _	
		actions known as the	
		lasts. During these reactions the pla	
		using the enzyme	
		splits into two three-carbon molecul	
cell invests	to phosphorylate th	ese three-carbon compounds and	to
		wn as	
	_	iles are phosphorylated by	
_		gain with more molecules of CO_2 . Th	
		ess requires molecules c	_

molecules of ATP and	molecules of NADPH. Plants may	use this three-carbon sugar to form
, which can b	oe used immediately in the plants	for
cellular respiration. This sugar ma	y also be stored for later use as mole	ecules of or
converted to,	a structural polysaccharide used in t	the construction of the plants cell
walls.		
Directions: Summarize pho	tosynthesis by completing t	he table below
	Inputs	Outputs
Light Reactions		
Calvin Cycle		
341 · 111 · 3 / 010		


Directions: Correctly label the numbered blanks on the attached diagram and use the following instructions to color the picture.

- 1. Color the thylakoid membrane and photosystems dark green
- 2. Color the stroma light green.

- 3. Color the arrows indicating light energy red.
- 4. Color and highlight the arrows indicating the input of water and output of O₂blue.
- 5. Color and highlight the arrows indicating the movement of electrons and production / use of ATP gold.
- 6. Color ATP synthase gold.
- 7. Color the proteins of the electron transport chains purple.
- 8. Color or highlight the arrows indicating the use of CO₂ and production of G3P black.

****Continue to Next Page****

Directions: Put a check in each column that is described by the statement in the left most column.					
	Photosystem I	Photosystem II	Calvin Cycle		
Use water as a reactant					
Supplies electrons for photophosphorylation					
Catalyzed by rubisco					
Oxididation of NADPH					
Produces NADPH					
Reaction Center P700					
Reaction Center P680					
Produces NADPH					
Fixes Carbon					
Produces G3P					
Produces O ₂					
Occurs in the thylakoids					
Requires sunlight					
Occurs in the Stroma					
Directly affected by closing of stomata					
Recycles NADP+ and ATP					
Contain Antenna Molecules					
Causes H+ to accumulate in the thylakoid					
Make Chemical Energy from sunlight					

